

11/03/2016

Project Overview:

Interfaces of Fluid Electrodes: New Conceptual Explorations

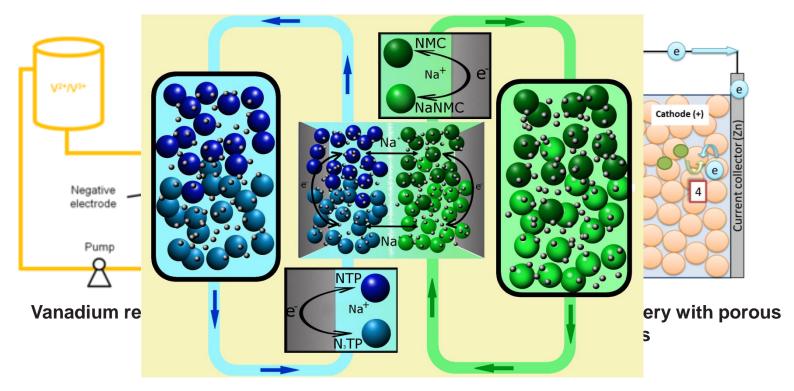
Y. Álvarez Gallego (VITO) - on behalf of the Consortium <u>Email: fp7-influence@vito.be</u>; <u>yolanda.alvarezgallego@vito.be</u>

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under **grant agreement No 608621**.

Outline

- General information
- Motivation
- Project objectives and scientific approach
- WP structure and relation between WPs
- Main challenges, Go-No Go criteria
- Expected impact

General information


- » The FP7-project InFluENCE started on September 1, 2013
- » The contract has a duration of **36 months**
- » Grant agreement no.: 608621
- » Total budget: ca. 3.3 M€; EC funding: ca. €2.6 M€
- » Programme: FP7-Cooperation (collaborative project)
- > Theme: ENERGY
- Subprogramme: ENERGY.2013.7.3.3 Understanding interfaces in rechargeable batteries and super-capacitors through *in situ* methods.
- » Call : FP7-ENERGY-2013-1

Semi Solid Flow Batteries (SSFB)

Energy conversion and storage system, "hybrid" between an aqueous redox flow battery and a solid state Li-ion or Na-ion battery

- SSFB vs aq RFB: energy densities ca.10 times higher
- SSFB vs Li-ion: decoupling power and energy

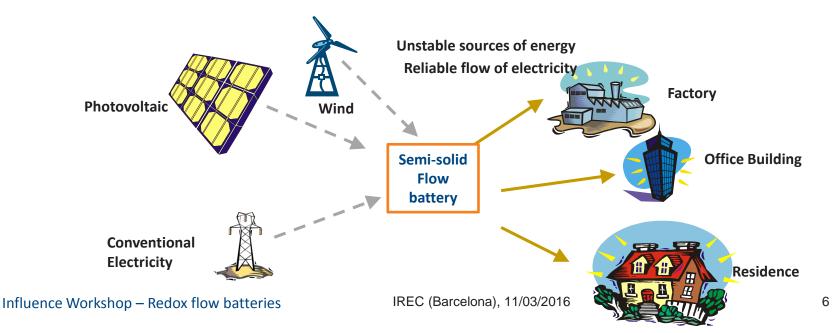
Why SSFBs?

Large scale applications:

- ❑ Storage of excess energy from the grid → key contribution to low-carbon economy
- Continuous power supplies, balancing the grid.
- \Box power and energy are decoupled \rightarrow safety and reliability

Highly relevant in the framework of EU energy policy and SET plan:

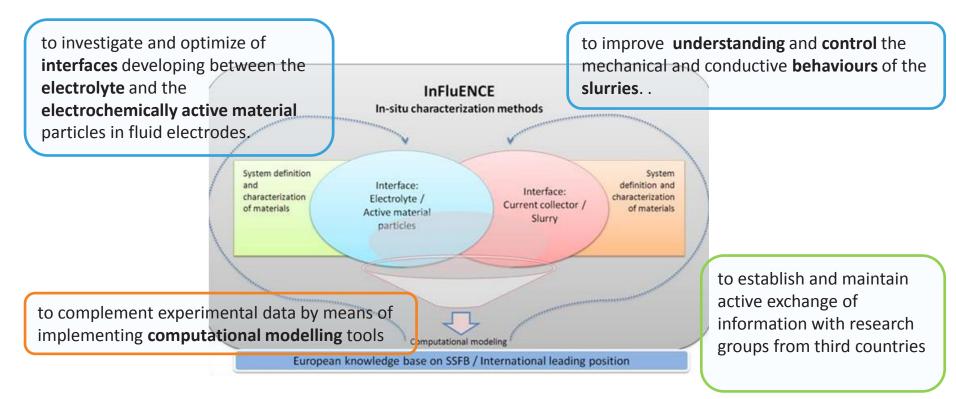
- □ Increasing share of energy from RES
- Multiple power sources, wind, solar, hydro...
- Next-generation storage systems: adaptation to offer/demand (on-peak & off-peak kWh cost)



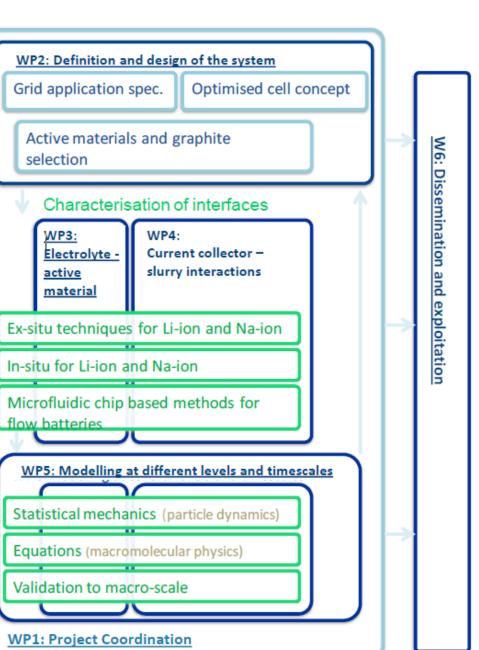
Why SSFBs?

Advantages of SSFBs versus conventional batteries:

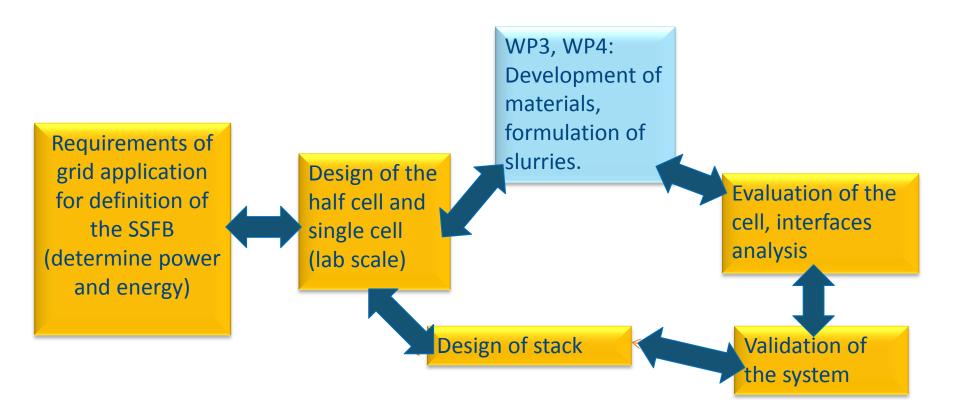
- Possible to adjust the chemistry of the system during its operative life by adding the necessary chemical into the electrode flow.
- Potential for prolonging the operative life of the battery system.
- Simple (in-situ) measurements of conductivity, viscosity and density might supply crucial information to monitor the state of health of the system.



Project objectives


GOAL: Improve fundamental understanding and control of interfaces in **semi- solid flow batteries** (SSFB) based on Li-ion and Na-ion active materials

→ methods and techniques developed could also be implemented for conventional Li- and Na-ion systems


Influence Workshop – Redox flow ba

InFluENCE

WP2: definition and design of the system

WP3: Interface Electrolyte / Active Particles

Task 3.1: **Identify influence of** particle morphology and electrolyte

Task 3.1 Identify reactions at interface

Task 3.1: **Identify suitable In**situ techniques

Task 3.1: Ex-situ characterization of solid/liquid interphase

Influence Workshop – Redox flow batteries

Task 3.2 Design of optimized interphase (active material & electrolyte)

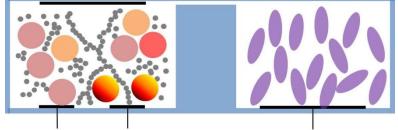
Development of longterm stable active material electrolyte interfaces in fluid electrodes

> Task 3.4: Investigate safety of the system

Task 3.2 Investigation of the electrochemical performance

> Task 3.3: In-situ characterization of the solid/liquid interphase

Task 3.3: **Development of** suitable techniques for in-situ monitoring



WP4: Interface current collector/slurry

- high density of Electro-Active Particles, but still 'flowable' electrodes
- additional condutive network of nanoparticles

- **cell walls** influence charge-transfer and suspension-flow
- changes in morphology, surface chemistry due to electrochemical cycling

Pre-investigate formulations

• Investigate particle interactions \rightarrow key parameters for stable slurries

Ex-situ

- Study electric percolation in microfluidic chips
- Study flow behaviour

In-situ (electrochemistry in chip)

- Determine influence of electrochemical cycling
- Investigate diffusion effects

WP5: Modelling the processes

molecular level

- Interface using MPCD and LB methods
- Rheology and colloidal stability of suspensions using MPCD
- Transport in membrane and electrolyte by EC techniques
- Electron transfer by electrochemical (EC) techniques

cell scale

- cell in static conditions with COMSOL
- cell in dynamic conditions: coupling of kinetics and hydrodynamics
- tentative optimisation by electrochemical engineering methodology

overall process scale

- Battery design
- Simulation of battery performance (capacity, current, power, voltage, time of discharge, lifetime, etc.) in "real conditions"
- Influence of thermal behaviour
- Energetic performance of the overall system

Consortium

Participant no.	Participant legal Name	Country	Organisation type*	
1 (Coordinator)	Flemish Institute for Technological Research (VITO)	Belgium	RTD	vision on technology
2	Karlsruhe Institute of Technology	Germany	RTD	Karlsuher Institut für Technologie
3	Universiteit Twente	The Netherlands	RTD	UNIVERSITEIT TWENTE.
4	IREC	Spain	RTD	IRECCO Installed Regionare Energie de Catalonie Catalonie Institute for Energy Research
5	Eckart	Germany	LE	Effect Pigments
6	Solvionic	France	SME	solvionic
7	6T-MIC	France	SME	6TMIC Solutions industrielles en ingénieries avancées
8	Imperial College London	United Kingdom	RTD	Imperial College London

Consortium: partner roles

- > VITO: Coordinator. Expertise in batteries, battery testing and system integration for smart grids. Experience in electrochemical modelling and in characterisation of cell components.
- **KIT** (prev. WWUM): Expertise in synthesis and characterization of Na-ion and Li-ion materials. Expertise in the investigation and optimization of the interfaces and interfaces between active materials and electrolytes, and full cells (batteries). WPL for WP3. TL in WP2. Partner in tasks for WP2, WP4 and WP6.
- » U Twente: Expertise in colloids, rheology and microfluidics. Equipment and experience in microscopy (AFM and CSLM), rheometry, contact angle goniometry, microchip fabrication
- IREC: Expertise and skills in electrochemical characterization of battery components. Experience in redox flow batteries..

Consortium: partner roles

- » **ECKART:** Expertise in metal particles and interface analysis of non-spherical particles.
- » Solvionic: Expertise in ionic liquids .
- **6TMIC:** Expertise in computational modelling and electrochemical engineering.
- » Imperial College: Expertise in molecular modelling.

Scientific output

Title, d.o.i.	Author(s)	Title of the journal	Vol./Issue	Date of publication	Pages	Open access ?
Water sensitivity of layered P2/P3-Na; <u>10.1039/C4TA02627F</u>	Daniel Buchholz , Luciana Gomes Chagas , Christoph Vaalma , Liming Wu , Stefano Passerini	Journal of Materials Chemistry A	2/33	06/2014	13415- 13421	
Unfolding the Mechanism of Sodium Insertion in Anatase TiO; <u>10.1002/aenm.201401142</u>	Liming Wu , Dominic Bresser , Daniel Buchholz , Guinevere Giffin , Claudia Ramirez Castro , Anders Ochel , Stefano Passerini	Advanced Energy	5	08/2014	1401142- 1401153	
P-type Na x Ni 0.22 Co 0.11 Mn 0.66 O 2 materials: linking synthesis with structure and electrochemical performance; <u>10.1039/C4TA039466</u>	L. G. Chagas , D. Buchholz , C. Vaalma , L. Wu , S. Passerini		2/147	10/2014	20263- 20270	Yes
Non-aqueous semi-solid flow battery based on Na-ion chemistry. P2-type Na; <u>10.1039/C4CC09597A</u>	Edgar Ventosa , Daniel Buchholz , Stefan Klink , Cristina Flox , Luciana Gomes Chagas , Christoph Vaalma , Wolfgang Schuhmann , Stefano Passerini , Joan Ramon Morante	Chemical Communications	51	12/2014	7298-7301	Yes
Nanocrystalline TiO2(B) as Anode Material for Sodium-Ion Batteries; <u>10.1149/2.0091502jes</u>	L. Wu , D. Bresser , D. Buchholz , S. Passerini	Journal of the Electrochemical Society	162/2	01/2015	A3052- A3058	Yes

Scientific output

Title, d.o.i.	Author(s)	Title of the journa	Vol./Is I sue	Date of publication	Pages	Open access ?
Electron Bottleneck in the Charge/Discharge Mechanism of Lithium Titanates for Batteries; <u>10.1002/cssc.201500349</u>	Edgar Ventosa , Marcel Skoumal , Francisco Javier Vazquez , Cristina Flox , Jordi Arbiol , Joan Ramon Morante	ChemSusChem	8/10	04/2015	1737–1744	Yes
Charge inversion and colloidal stability of carbon black in battery electrolyte solutions;	Yan Zhang , Aditya Narayanan , Frieder Mugele , Martien A. Cohen Stuart , Michel H.G. Duits	Colloids and Surfaces A: Physicochemical and Engineering Aspects	489	08/2015	461–468	No
Solid electrolyte interphase in semi-solid flow batteries: a wolf in sheep's clothing; <u>10.1039/C5CC04767F</u>	E. Ventosa , G. Zampardi , C. Flox , F. La Mantia , W. Schuhmann , J. R. Morante	Chemical Communications	Vol. 51/Iss ue 81	10/2015	14973-14976	Yes
Extraordinary Performance of Carbon- Coated Anatase TiO 2 as Sodium-Ion Anode; <u>10.1002/aenm.201501489</u>	Muhammad Nawaz Tahir, Berno Oschmann, Daniel Buchholz, Xinwei Dou, Ingo Lieberwirth, Martin Panthöfer, Wolfgang Tremel, Rudolf Zentel, Stefano Passerini	l Advanced Energy Materials	n/a- n/a	12/2015	n/a-n/a	Yes
Layered Na-Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P- and O-Type Phases; <u>10.1002/aenm.201501555</u>	Marlou Keller , Daniel Buchholz , Stefano Passerini	Advanced Energy Materials	n/a- n/a	11/2015	n/a-n/a	Yes

Scientific output – open access

OpenAIRE	*	OpenAIRE PARTICIPATE SEARCH STATIST Publications Data Statistics Statis Statis Statis </th					
Home Search Find		P-type NaxNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance					
INFLUENCE sea	9	Chagas, Luciana G.; Buchholz, Daniel; Vaalma, Christoph; Wu, Liming; Passerini, Stefano (2014) Projects: INFLUENCE (608621)					
	Interfaces of Fluid Electrodes: New Conceptual	P-type layered oxides are promising cathode materials for sodium-ion batteries and a wide variety of compounds have been investigated so far. Nevertheless, detailed studies on how to link synthesis temperature, structure and electrochemistry are still rare. Herein, we present a study on P-type NaxNi0.22Co0.11Mn0.66O2 materials, investigating the influence of synthesis temperature on their structure and electrochemical performance. The change of annealing temperature leads to various materials					
FUNDER	FP7	change of dimeding competiture reads to various matchais					
UNDING STREAM	SP1	Non-aqueous semi-solid flow battery based on Na-ion chemistry. P2-type 👌					
CIENTIFIC AREA	ENERGY	Ventosa, Edgar; Buchholz, Daniel; Klink, Stefan; Flox, Cristina; Chagas, Luciana G.; Vaalma, Christoph; Schuhmann, Wolfgang; Passerini, Stefano; Morante, Joan Ramon (2014)					
ALL	FP7-ENERGY-2013-1	Projects: INFLUENCE (608621)					
CONTRACT (GA) NUMBER 608621		We report the first proof of concept for a non-aqueous semi-solid flow battery (SSFB) based on Na-ion chemistry using P2-type NaxNi0.22Co0.11Mn0.66O2 and NaTi2(PO4)3 as positive and negative electrodes, respectively. This					
TART DATE	2013/09/01	concept opens the door for developing a new low-cost type of non-aqueous semi-solid flow batteries based on the rich chemistry of Na-ion intercalating compounds.					
ND DATE	2016/08/31						
PECIAL CLAUSE 39	yes	Nanocrystalline TiO2(B) as Anode Material for Sodium-Ion Batteries down with the second secon					
RGANIZATIONS	IREC, Imperial, VITO, 6TMIC, SOLVIONIC SA, UNI KIT, WWU	Projects: INFLUENCE (608621) High surface area, nanostructured, and phase-pure TiO2(B) noodles-like secondary particles were successfully synthesized by a facile one-pot synthesis, based on the hydrolysis of TiCl3 using a mixture of ethylene glycol and					
ORE INFORMATION	元 え Detailed project information (CORDIS)	water at moderate temperature. The primary nanoparticles have a uniform size and are about 15 nm in c as determined by TEM analysis and exhibit an increased exposure of the (010) facet as indicated by XRD a Unlike the electrochemical reaction with l					

Project website: www.fp7-influence.eu

Interfaces of Fluid Electrodes: New Conceptual Explorations

This project has receivea European Union's Sevent research, technological c demonstration under **gra**

COMMISSION

Home

- Project scope
- Consortium
- Downloads
- Contact

PARTNERS

Doc. sharepoint

USER MENU

- My account
- Create users
- Log out

View

Edit

Welcome

The FP7 project InFluENCE aims at improving the fundamental understanding and control of interfaces of a battery type based on Liion and Na-ion active materials: semi solid flow batteries (SSFB). The fact that the case study will be a SSFB set-up instead of classic lithium ion batteries is an asset, given that the methods and techniques developed are generic and could as well be implemented for conventional Li- and Na-ion systems for the techniques that are not concentrated on flow aspects.

A main objective is the investigation and optimization of the **interfaces** developing between the electrolyte and the electrochemically active material particles in **fluid electrodes**. The acquired knowledge would allow the chemical and morphological optimization of active materials as well as the design of **optimized** interfacial layers (also called artificial Solid Electrolyte Interfaces, **art-SEI**) capable of warrant stable interfaces.

and the second second second second

NEWS!

26 February 2016: workshop 'Flow batteries' at IREC in Barcelona (Spain) --> More information and registration

New publications (open access):

- http://pubs.rsc.org/en/content/articlehtml/2015/cc/c5cc04767f
- http://onlinelibrary.wiley.com/doi/10.1002/cssc.201500349/full
- http://pubs.rsc.org/en/content/articlepdf/2015/cc/c4cc09597a

27 May 2016: SIRBATT workshop 'Controlling Lithium Battery Interfaces' in Orlando (Florida, USA) --> More information and registration: www.sirbatt.eu or here

COMM

Project website: www.fp7-influence.eu

- Home
- Project scope
- Consortium
- Downloads
- Contact

PARTNERS

Doc. sharepoint

USER MENU

- My account
- Create users
- Log out

View Edit

Downloads

- FP7 Influence project overview
- FP7 Influence Midterm report summary

Publications

- Ventosa et al. Solid electrolyte interphase in semi-solid flow batteries; ChemComm 2015.
- Ventosa et al. ChemSusChem 2015.
- Ventosa et al. Non-aqueous semi-solid flow battery based on Na-ion chemistry; ChemComm 2015
- Wu et al. JES 2015
- Chagas et al. 2014

Upcoming events:

 Topical workshop on rheology and system design for SSFB. - Barcelona, beginning 2016. Programme and registration

Past events:

- Influence Short Course Electrochemical Engineering and Modeling Programme and registration
- Influence workshop KIT Ulm: Presentations Influence Workshop Ulm; programme Influence Workshop Ulm

11/03/2016

Thank you!

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under **grant agreement No 608621**.